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Abstract

The application of the method of fundamental solutions to the Cauchy problem for steady-state heat conduction in
two-dimensional functionally graded materials (FGMs) is investigated. The resulting system of linear algebraic equa-
tions is ill-conditioned and, therefore, regularization is required in order to solve this system of equations in a stable
manner. This is achieved by employing the zeroth-order Tikhonov functional, while the choice of the regularization
parameter is based on the L-curve method. Numerical results are presented for both smooth and piecewise smooth
geometries. The convergence and the stability of the method with respect to increasing the number of source points
and the distance between the source points and the boundary of the solution domain, and decreasing the amount of
noise added into the input data, respectively, are analysed.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, functionally graded materials (FGMs) have been introduced and applied in the develop-
ment of structural components subject to non-uniform service requirements. FGMs possess continuously
varying microstructure and mechanical and/or thermal properties. These materials are essentially
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two-phase particulate composites, e.g. ceramic and metallic alloy phases, synthesized such that the compo-
sition of each constituent changes continuously in one direction, to yield a predetermined composition pro-
file, see e.g. Suresh and Mortensen (1998). Although the initial application of FGMs was to synthesize
thermal barrier coatings for space applications, see e.g. Hirano et al. (1990), later investigations uncovered
a wide variety of potential applications, such as nuclear fast breeder reactors, see e.g. Igari et al. (1990),
graded refractive index materials in audio—video disks, see e.g. Koike (1992) piezoelectric and thermoelec-
tric devices, see e.g. Osaka et al. (1990), Tani and Liu (1993) and Watanabe et al. (1993), dental and medical
implants, see e.g. Oonishi et al. (1994), thermionic converters, see e.g. Desplat (1996), etc. However, for the
sake of the physical explanation, we will refer in this study to the steady-state heat conduction problem for
FGM:s.

In most boundary value problems in heat transfer, the thermal equilibrium equation has to be solved
with the appropriate initial and boundary conditions for the temperature and/or normal heat flux, i.e.
Dirichlet, Neumann or mixed boundary conditions. These problems are called direct problems and their
existence and uniqueness have been well established, see for example Hadamard (1923). However, there
are other engineering problems which do not belong to this category. For example, the thermal conductiv-
ities and/or the heat sources are unknown, the geometry of a portion of the boundary is not determined or
the boundary conditions are incomplete, either in the form of underspecified and overspecified boundary
conditions on different parts of the boundary or the solution is prescribed at some internal points in the
domain. These are inverse problems, and it is well known that they are generally ill-posed, i.e. the existence,
uniqueness and stability of their solutions are not always guaranteed, see e.g. Hadamard (1923).

A classical example of an inverse problem in steady-state heat transfer is the Cauchy problem in which
both temperature and normal heat flux boundary conditions are prescribed only on a part of the boundary
of the solution domain, whilst no information is available on the remaining part of the boundary. This in-
verse boundary value problem has been studied by many authors for heat conduction in isotropic materials,
see e.g. Ingham and Yuan (1994), Lesnic et al. (1997) and Hao and Lesnic (2000), anisotropic media, see
Mera et al. (2000, 2002), and heat conduction in fins, see Marin et al. (2003a,b). However, to our knowl-
edge, the Cauchy problem for steady-state heat conduction in two-dimensional anisotropic FGMs has not
been investigated as yet. In addition, the numerical solution to this inverse problem is approached by
employing the method of fundamental solution (MFS), originally introduced by Kupradze and Aleksidze
(1964) and then applied for solving numerically a wide variety of boundary value problems, see e.g.
Karageorghis and Fairweather (1987), Fairweather and Karageorghis (1998), Poullikkas et al. (1998a,b,
2001, 2002), Berger and Karageorghis (1999, 2001), Karageorghis (2001) and Ramachandran (2002).
The advantages of the MFS over domain discretisation methods, such as the finite-difference (FDM)
and the finite element methods (FEM), are very well documented, see Fairweather and Karageorghis
(1998). Moreover, the MFS has all the advantages of boundary methods, such as the boundary element
method (BEM), as well as several advantages over other boundary methods. For example, the MFS does
not require an elaborate discretisation of the boundary, integrations over the boundary are avoided, the
solution in the interior of the domain is evaluated without extra quadratures, its implementation is very
easy and only little data preparation is required.

In this paper, we extend the method proposed by Marin and Lesnic (2004, 2005) and Marin (in press,
in press) for solving numerically the Cauchy problem in two- and three-dimensional isotropic elastostatics
and Helmholtz-type equations, respectively, to the steady-state heat conduction in two-dimensional aniso-
tropic FGMs. The MFS discretised system of equations corresponding to the Cauchy problem for steady-
state heat conduction in two-dimensional anisotropic FGMs is ill-conditioned and hence it is solved by
employing the zeroth-order Tikhonov regularization method, see e.g. Tikhonov and Arsenin (1986), whilst
the choice of the regularization parameter is based on the L-curve criterion, see Hansen (2001). Three exam-
ples for steady-state heat transfer in two-dimensional anisotropic FGMs involving smooth and piecewise
smooth geometries are investigated and the convergence and stability of the method with respect to the
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location and the number of source points and the amount of noise added into the Cauchy input data,
respectively, are analysed.

2. Mathematical formulation

Consider an open bounded domain Q C R? occupied by an exponentially graded anisotropic solid and
assume that Q is bounded by a piecewise smooth curve I' = 0Q, such that I' = I';UI',, where I'|, > # () and
I'y N T'y = (). The thermal conductivities of this material can be expressed as, see Berger et al. (in press),

ki/(x) :Kfjexp (2ﬁx), RIS Q> lv]: 1,2, (1)

where the constant real or pure imaginary vector f = (f, i) characterises the direction and the magnitude
of the variation and the matrix K = (K;),, ;., is symmetric and positive-definite. It should be noted that
K = (J;),, <, in the case of an isotropic material, where J;; is the Kronecker delta tensor. Then the heat
flux in the solid is expressed as

¢i(x) = —k;(x)0,T(x), x€Q, i=1,2, (2)

where 7(x) represents the temperature at x € Q, 0; = 0/0x; and the customary standard Einstein notation
for summation over repeated indices is used. On using Egs. (1) and (2), the Fourier law in the absence
of heat sources, namely,

0ipi(x) =0, x€Q, 3)
can be expressed in terms of the temperature, 7, as
—(K;;0:0;T(x) + 2B.K;0,T(x)) exp(2f-x) =0, x€ Q. (4)

We now let n(x) be the unit outward normal vector at I and @(x) be the normal heat flux at a point x € I’
defined by

®(x) = ni(x)g,(x), xel. (5)

In the direct problem formulation, the knowledge of the temperature and/or normal heat flux on the
whole boundary I' gives the corresponding Dirichlet, Neumann, or mixed boundary conditions which
enables us to determine the temperature in the solution domain Q. If it is possible to measure both the tem-
perature and the normal heat flux on a part of the boundary I', say I'y, then this leads to the mathematical
formulation of an inverse problem consisting of Eq. (4) and the boundary conditions

T(x)=T(x), ®(x)=d(x), xel, (6)

where T and @ are prescribed functions. In the above formulation of the boundary conditions (6), it can be
seen that the boundary I'; is overspecified by prescribing both the temperature 7| r = = T and the normal
heat flux @[ = @, whilst the boundary I'; is underspecified since both the temperature 7', and the normal
heat flux @|, are unknown and have to be determined. This problem, termed the Cauchy problem is much
more difficult to solve both analytically and numerically than the direct problem, since the solution does not
satisfy the general conditions of well-posedness. Although the problem may have a unique solution, it is
well known, see e.g. Hadamard (1923), that this solution is unstable with respect to small perturbations
in the data on I'y. Thus the problem is ill-posed and we cannot use a direct approach, such as the Gauss
elimination method, in order to solve the system of linear equations which arises from the discretisation
of the partial differential equations (4) and the boundary conditions (6). Therefore, regularization methods
are required in order to solve accurately the Cauchy problem for anisotropic FGMs.
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3. Method of fundamental solutions

The fundamental solution G of the heat balance equation (4) for two-dimensional anisotropic FGMs is
given by, see e.g. Clements and Budhi (1999) and Berger et al. (in press),

_ K()(KR)
2mv/det K

where y is a source point, Kj is the modified Bessel function of the second kind of order zero, k = /B - KB,
R =R(x,y) = Vr-K'rand r=r(x,y) = x — y. It should be noted that the fundamental solution for two-
dimensional isotropic FGMs has been obtained by Gray et al. (2003).

The main idea of the MFS consists of the approximation of the temperature in the solution domain by a
linear combination of fundamental solutions with respect to M source points y; in the form

Glx,y) = exp{—B-(x+y)}, x€Q yeR\Q ()

T(x)~T"(a,Y ;x) = a;,G(x,y'), x€Q, (8)

where a = (ay, . . .,ay) and Y is a 2M-vector containing the coordinates of the source points y/, j=1,..., M.
On taking into account the definitions of the heat flux (2), the normal heat flux (5) and the fundamental
solution (7) then the normal heat flux, through a curve defined by the outward unit normal vector n(x),
can be approximated on the boundary I" by

&(x) ~ M(a,Y ;x) =aH(x,y)), x€T, 9)
where

H(x,y) = —n;(x)K;;0,G(x,y) exp(2p - x)

exp(B-r) (x NG
=——F(=(n(x) r)K|(kR) + (n(x) - Kp)Ko(kR)), xe€I, yeR\Q, 10
omTaaine (g (10 KL (R) -+ () - KPKo(oR)) ye®\ (10)
with K; the modified Bessel function of second kind of order one.
If N collocation points x’, i = 1,..., N, are chosen on the overspecified boundary I'; of the domain 2 and

the location of the source points y/, j = 1,..., M, is set then Eqs. (8) and (9) recast as a system of 2N linear
algebraic equations with M unknowns which can be generically written as

AX =F, (11)
where the MFS matrix A, the unknown vector X and the right-hand side vector F are given by

Aij = G(xi’yj>’ ANH] :H(xiayj)a Xj = aj,

. ) 12
F‘,‘:T(xl)7 FN+,-:<D(x’), l.:17...7N, ]:177M ( )

It should be noted that in order to uniquely determine the solution X of the system of linear algebraic
equations (11), i.e. the coefficients a;, j=1,..., M, in the approximations (8) and (9), the number N of
boundary collocation points and the number M of source points must satisfy the inequality M < 2N. How-
ever, the system of linear algebraic equations (11) cannot be solved by direct methods, such as the least-
squares method, since such an approach would produce a highly unstable solution. Most of the standard
numerical methods cannot achieve a good accuracy in the solution of the system of linear algebraic equa-
tions (11) due to the large value of the condition number of the matrix A which increases dramatically as
the number of boundary collocation points and source points increases. It should be mentioned that for
inverse problems, the resulting systems of linear algebraic equations are ill-conditioned, even if other
well-known numerical methods (FDM, FEM or BEM) are employed. Although the MFS system of linear
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algebraic equations (11) is ill-conditioned even when dealing with direct problems, the MFS has no longer
this disadvantage in comparison with other numerical methods and, in addition, it preserves its advantages,
such as the lack of any mesh, the high accuracy of the numerical results, etc.

3.1. Tikhonov regularization method

In our study, we only consider the Tikhonov regularization method, see Tikhonov and Arsenin (1986),
since it is simple, non-iterative and it provides an explicit solution, see Eq. (16) below. In addition, it is fea-
sible to apply the Tikhonov regularization method to large systems of equations unlike the singular value
decomposition which may become prohibitive for such problems, see Hansen (2001). For other regulariza-
tion techniques used for solving such ill-conditioned problems, we refer the reader to Hansen (1998).

The Tikhonov regularized solution to the system of linear algebraic equations (11) is given by

X, : 7,(X,) = min 7,(X), (13)
XeRM
where .7 ; represents the kth order Tikhonov functional given by
Ti() i RY = [0,00),  T,(X) = |AX - F; + 2|RVX]S, (14)

the matrix R® e R™~©*M induces a %*-constraint on the solution X and A > 0 is the regularization param-
eter to be chosen. For example, in the case of the zeroth-, first- and second-order Tikhonov regularization
method the matrix R®, i.e. k=0,1,2, is given by

T 0 ... 0 -1 1 0 ... 0
01 ... 0 0 -1 1 ... 0
R(O) = . . . . € RMXM’ R(l) = . . . . . € R(Mil)XM’
0 0 ... 1 0 0 ... —1 1
rm -2 1 0 0
0 1 -2 1 ... 0
R®»=1| o | e RV (15)
o 0 ... 1 =21

Solving V.7 ;(X) = 0 for X € R, we obtain that the Tikhonov regularized solution, X;, of the problem
(13) is given as the solution of the regularized equation

(ATA n AQR(”TR(")) X = ATF. (16)

Since the simple least-squares solution, i.e. 2 =0, is completely dominated by contributions from data
errors and rounding errors, it is necessary to use regularization when solving ill-conditioned systems of lin-
ear equations. By adding regularization we are able to damp out these contributions and maintain the norm
IR®X]||, to be of reasonable size.

3.2. Choice of the regularization parameter

The choice of the regularization parameter in Eq. (16) is crucial for obtaining a stable solution and this is
discussed next. If too much regularization, or damping, i.e. 2 large, is imposed on the solution of Eq. (16)
then it will not fit the given data F properly and the residual norm ||AX — F||, will be too large. If too little
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regularization is imposed on the solution of Eq. (16), i.e. 4% small, then the fit will be good, but the solution
will be dominated by the contributions from the data errors, and hence ||R* X||, will be too large. It is quite
natural to plot the norm of the solution as a function of the norm of the residual parametrised by the reg-
ularization parameter 4, i.e. {|AX; — F||,,||R®X,]|,, 2 > 0}. Hence, the L-curve is really a trade-off curve
between two quantities that both should be controlled and, according to the L-curve criterion, the optimal
value Ao of the regularization parameter 4 is chosen at the “corner” of the L-curve, see Hansen (1998,
2001).

As with every practical method, the L-curve has its advantages and disadvantages. There are two main
disadvantages or limitations of the L-curve criterion. The first disadvantage is concerned with the recon-
struction of very smooth exact solutions, see Tikhonov et al. (1998). For such solutions, Hanke (1996)
showed that the L-curve criterion will fail, and the smoother the solution, the worse the regularization
parameter A computed by the L-curve criterion. However, it is not clear how often very smooth solutions
arise in applications. The second limitation of the L-curve criterion is related to its asymptotic behaviour as
the problem size M increases. As pointed out by Vogel (1996), the regularization parameter 4 computed by
the L-curve criterion may not behave consistently with the optimal parameter 4, as M increases. However,
this ideal situation in which the same problem is discretised for increasing M may not arise so often in prac-
tice. Frequently the problem size M is fixed by the particular measurement setup given by N, and if a larger
M is required then a new experiment must be undertaken since the inequality M < 2N must be satisfied.
Apart from these two limitations, the advantages of the L-curve criterion are its robustness and ability
to treat perturbations consisting of correlated noise, for more details see Hansen (2001).

4. Numerical results and discussion

In order to present the performance of the MFS in conjunction with the zeroth-order Tikhonov regular-
ization method, we solve the Cauchy problem (4) and (6) associated with two-dimensional anisotropic
FGMs for three typical examples in both smooth and piecewise smooth geometries:

Example 1 (Square anisotropic FGM plate: 1D case). We consider the following analytical solutions for
the temperature and normal heat flux:

1 —exp{=2(fx1 + fox2)}
1 —exp{=2(f; +$,)} '

) (x) = =2{m (x)(K11B; + Ki2B,) + ma(x) (K21 By + KnPs)} I

7@ (x) = T,
(17)

Ty
—exp{=2(f; + )}’
in the square Q= {x=(x1,x)[0<xp,x;<1}, where T,=100.0, f,=-0.5 p,=0.0, K;;=5.0,

Ki»=K,;=0.0 and K>, =1.0. Here Flz{x€F|x1:1,0<x2<1}U{x€F|0<x1<1,x2:1} and
I={xelx=0,0<x,<1}U{xeTl|0<x <1, x,=0}.

Example 2 (Square anisotropic FGM plate: 2D case). We consider the same solution domain €, bound-
aries I'; and I',, and analytical solutions for the temperature and normal heat flux as in Example 1, with
TO = 1000, ﬁl = —0.5, ﬁz = 02, Kll = 30, K12 = K21 = 0.0 and K22 =1.0.

Example 3 (Circular anisotropic FGM plate: 2D case). We consider similar analytical solutions for the
temperature and normal heat flux as in the previous examples in the unit disk Q = {x = (x,x2)[x]+
x% < 1}, where To = 100, ,81 = —0.5, ,32 = 03, K]] = 30, K12 = K21 =0.0 and K22 =2.0. Here
I'i={xerl0<0x)<n}and I'; = {x € '/t < O(x) < 2r}, where 0(x) is the angular polar coordinate of x.
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It should be noted that for the examples considered, the Cauchy data is available on a portion I'; of the
boundary I" such that meas(I';) = meas(I')/2. The Cauchy problems investigated in this study have been
solved using a uniform distribution of both the boundary collocation points x, i = 1,..., N, and the source
points v, j=1,..., M, with the mention that the later were located on the boundary of the disk B(0, R),
where the radius R > 0 was chosen such that Q C B(0, R). Furthermore, the number of boundary colloca-
tion points was set to N =40 for the Examples 1-3.

4.1. Stability of the method

In order to investigate the stability of the MFS, the temperature 7', = S |r, has been perturbed as
T =T +38T, where 0T is a Gaussian random variable with mean zero and standard deviation
o =maxy, | T | x(p;/100), generated by the NAG subroutine GOSDDF, and p;% is the percentage of
additive noise included in the input temperature data T| r, in order to simulate the inherent measurement
errors.

Fig. 1 presents the L-curves obtained for the Cauchy problem given by Example 1 using the zeroth-
order Tikhonov regularization method, i.e. k=0 in Eq. (14), to solve the MFS system (11), M =40
source points, R = 5.0 and with various levels of noise added into the input temperature data. From this
figure it can be seen that for each amount of noise considered the “corner” of the corresponding L-curve
can be clearly determined and /4= A= 10°° and A= Jopt = 107* for pr=1 and pre (3,5},
respectively.

In order to analyse the accuracy of the numerical results obtained, we consider the discretised L,-norms
on the underspecified boundary I', corresponding to the analytical temperature 7*™ and normal heat flux
@™ namely,

1010 —
]
< 108 —
g
o
€
o
c
c 10% —
S
|
[}
0
104 —

I I I I
5 10 50 100

Residual norm [|A X, - F||,

Fig. 1. The L-curves obtained for various levels of noise added into the temperature data T/, namely pr = 1% (—), pr = 3% (—-) and
pr=>5% (---), with M =40 source points, N =40 boundary collocation points and R = 5.0 for Example 1.
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||T(an)H2 _ z:(T(an)(xl))Z7 H(p(an)H2 =z Z(dj(an)(xl))z’ (18)

1 =1

=~ —

L 1 L
=

where x, I=1,...,L, are L uniformly distributed points on the boundary I',. The absolute errors e and eg
can be defined as

er(2,M,R) = T —TW||,, eo(2,M,R) = || — @], (19)

where 7 and & are the numerical temperature and normal heat flux, respectively, obtained for the value
4 of the regularization parameter and using M source points uniformly distributed on the boundary of the
disk B(0, R). Fig. 2(a) and (b) illustrate the accuracy errors e and eg given by relation (19), as functions of
the regularization parameter A, obtained with various levels of noise added into the input temperature data
T|j, for the Cauchy problem given by Example 1. From these figures it can be seen that both errors e and
eq decrease as the level of noise added into the input temperature data decreases for all the regularization
parameters 4 and ey < eg for all the regularization parameters 4 and a fixed amount p7 of noise added into
the input temperature data, i.e. the numerical results obtained for the temperature are more accurate than
those retrieved for the normal heat flux on the underspecified boundary I',. Furthermore, by comparing
Figs. 1 and 2, it can be seen, for various levels of noise, that the “corner” of the L-curve occurs at about
the same value of the regularization parameter 4 where the minimum in the accuracy errors ez and eg is
attained. Hence the choice of the optimal regularization parameter Ao, according to the L-curve criterion
is fully justified. Similar results have been obtained for the Cauchy problems given by Examples 2 and 3 and
therefore they are not presented here. It should be mentioned that, as expected, the errors in evaluating the
temperature and normal heat flux on the underspecifed boundary I', are more sensitive to the noise added
into the input flux data @[ than to the noise added into the input temperature data 7| , since the flux
contains first-order derivatives of the temperature.

Fig. 3(a) and (b) illustrate the analytical and the numerical results for the temperature 7 on the under-
specified boundary x; = 0 and the normal heat flux @ on the underspecified boundary x, = 0, respectively,

100.0—

103_
—— p;=1%
—&— p.=3%
= [0,
—a— p,=5% -
10.0—
O:'_ A ws 0
5 5 g
w i}
1.0
10°—
—&— p;=1%
—&— p;=3%
\= . —a&— p;=5%
o1 | | | | 10% i i I |
100 108 10 10 102 1010 108 10°® 10 102
(a) Regularization parameter A (b) Regularization parameter A

Fig. 2. The accuracy errors (a) ez, and (b) eq, as functions of the regularization parameter A, obtained for various levels of noise added
into the temperature data 7| , namely pr= 1% (0O), pr= 3% (O) and pr= 5% (A), with M = 40 source points, N =40 boundary
collocation points and R = 5.0 for Example 1.
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100 — 292 —
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a0 | B o9 m@-@@
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60 — 290 — ®
f
T o o
40— 280— R
Analytical o Analytical
20— @ =1% 288— @ pp=1%
SO pr=3% %) C@ - pr=3%
0 [ [ [ [ | 287 [ [ [ [ |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
@ X () X2

Fig. 3. (a) The analytical 7® (—) and the numerical 7'” temperatures on the underspecified boundary x, = 0, and (b) the analytical
@™ (—) and the numerical #* fluxes on the underspecified boundary x; = 0, retrieved using M = 40 source points, N = 40 boundary
collocation points, R=15.0, 1 = A, and various levels of noise added into the temperature data T\rl, namely pr= 1% (---0O---),
pr=23%(---O---)and pr=>5%(---A---), for Example 1.

obtained using the optimal regularization parameter 4 = Ao, chosen according to the L-curve criterion,
M =40 source points, R=15.0 and various levels of noise added into the input tempearture data 7|,
namely pr € {1,3,5}, for the Cauchy problem given by Example 1. From these figures we can conclude that
the numerical solutions retrieved for Example 1 are stable with respect to the amount of noise pradded into
the input temperature data T| . Moreover, a similar conclusion can be drawn from Figs. 4 and S which
present the numerical results for the temperature 7 and normal heat flux @ on the underspecified boundary
I'; in comparison with their analytical values, obtained using 1 = A, chosen according to the L-curve
criterion, M = 40 source points, R = 5.0 and various levels of noise added into the input temperature data
T| r,» namely pr € {1,3,5}, for the Cauchy problems given by Examples 2 and 3, respectively.

4.2. Convergence and accuracy of the method

In order to investigate the influence of the number M of source points on the accuracy and stability of
the numerical solutions for the temperature and normal heat flux on the underspecified boundary I',, we set
R = 5.0 and py =5 for the Cauchy problem given by Example 2. Although not presented here, it should be
noted that similar results have been obtained for the Cauchy problems given by the other examples consid-
ered in this study. To do so, we define the normalised errors £+ and E4 for the temperature and the normal
heat flux, respectively, as

o eT(;LoptaMaR)

ET(M,R)_W7 Eds(M,R):
2

e@(loptyMaR)

an ? (20)
1
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Fig. 4. (a) The analytical 7 (—) and the numerical 7’ temperatures on the underspecified boundary x, = 0, and (b) the analytical
@*(—) and the numerical @* fluxes on the underspecified boundary x; = 0, retrieved using M = 40 source points, N = 40 boundary
collocation points, R = 5.0, 4= Aop and various levels of noise added into the temperature data 7| e namely pr=1% (---0--+),
pr=23%(--O--)and pr="5% (---A---), for Example 2.

50 —
40 —
20 — 0—
T ¢
0 — Analytical
co@ee pr=1%
<@ pp=3% -50
cesdee P =5% )
20 | | I I | I ! ! ! |
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
(a) 612 (b) 612w

Fig. 5. (a) The analytical 7*™ (—) and the numerical 7% temperatures, and (b) the analytical #* (—) and the numerical @ fluxes,
retrieved on the underspecified boundary I'; with M = 40 source points, N =40 boundary collocation points, R = 5.0, 4 = A, and
various levels of noise added into the temperature data 7|, namely pr= 1% (---0---), pr=3% (- --O---) and pr = 5% (- - -A- ), for
Example 3.
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where e7{(opt, M, R) and ea(/opi» M, R) are given by Eq. (19) with 2 = Aoy, and || 7|, and ||@*")||, are the
discretised L,-norms of the temperature and normal heat flux, respectively, defined by relation (18).

In Fig. 6(a) and (b) we present the normalised errors E7and E4 for the Example 2, respectively, as func-
tions of the number M of source points, obtained using 4 = Aoy given by the L-curve criterion. It can be
seen from these figures that both normalised errors tend to zero as the number M of source points increases,
with the mention that Eg increases slightly for M > 20, and, in addition, these errors do not vary substan-
tially for M > 10. These results indicate the fact that accurate numerical solutions for the temperature and
the normal heat flux on the underspecified boundary I', can be obtained using a relatively small number M
of source points.

Next, we analyse the convergence of the numerical method proposed with respect to the position of the
source points. To do so, we set M =40 and py =5 for the Cauchy problem given by Example 1, while at
the same time varying the radius R € [Ryin, Rmax)- Fig. 7(a) and (b) illustrate the normalised errors E7 and
E4 defined by relation (20) for Example 1, respectively, as functions of R, obtained using 4 = A, given by
the L-curve criterion, Ry, = 1.5 and R,,.x = 10. From these figures it can be seen that the larger is the
distance from the source points to the boundary of the solution domain €, i.e. the larger is R, the better
the accuracy in the numerical temperature and normal heat flux. It should be noted that the value R=6
was found to be sufficiently large such that any further increase of the distance between the source points
and the boundary I' did not significantly improve the accuracy of the numerical solutions for the examples
tested in this paper.

It is interesting to mention that, in practice both accuracy errors er and eg deteriorate if Ry, is very
large and this is contrary with some of the theoretical results available in the literature. This feature of
the MFS can be noticed from Fig. 8(a) and (b) which illustrate the behaviour of the accuracy errors er
and ey, respectively, obtained using A= ., given by the L-curve criterion, M =40 source points,
Riin < R < Ryax, Ryin = 1.5 and R, = 50. It can be seen from these figures that both errors ez and eg
start increasing for R > 16. However, the optimal choice of R still remains an open problem, as pointed
out by Katsurada and Okamoto (1996), and it requires further research.

1.0 0.5 —

0.8 — 0.4 —

0.6 — 0.3 —
= E,

0.4 02 —

0.2 — 0.1 —

0.0 | | | | 0.0 | I I |

0 20 40 60 80 0 20 40 60 80

@ M (b) M

Fig. 6. The normalised accuracy errors (a) E7, and (b) Eg, obtained with N = 40 boundary collocation points, R = 5.0, 1 = o, and
pr=>5% for Example 2, as functions of the number M of source points.
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.
10 15 —
2.0 —
10 —
E; E,
1.5—
5 —
1.0 I I | | | I I I | |
2 4 6 8 10 2 4 6 8 10
(@) R (b) R

Fig. 7. The normalised accuracy errors (a) E7, and (b) Eg, obtained with M = 40 source points, N = 40 boundary collocation points,
A= Jopt and pr= 5% for Example 1, as functions of the distance R between the source points and the boundary I" of the solution
domain Q.

30
8 —
6 — 20 —|
e e
T
4 — (]
10 —
2 —
0 I I I I I 0 [ [ I I I
0 10 20 30 40 50 0 10 20 30 40 50
(@ R (b) R

Fig. 8. The accuracy errors (a) e, and (b) eq, obtained with M = 40 source points, N = 40 boundary collocation points, 2 = /o and
pr= 5% for Example 1, as functions of the distance R between the source points and the boundary I' of the solution domain Q.

5. Conclusions

In this paper, the Cauchy problem associated with two-dimensional anisotropic FGMs has been inves-
tigated by employing the MFS. The resulting ill-conditioned system of linear algebraic equations has been
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regularized by using the zeroth-order Tikhonov regularization method, while the choice of the optimal reg-
ularization parameter was based on the L-curve criterion. Three examples involving both smooth and
piecewise smooth geometries have been analysed. The numerical results obtained show that the proposed
method is convergent with respect to increasing the number of source points and the distance from the
source points to the boundary of the solution domain up to a threshold value (which is “large” from
the numerical point of view) and stable with respect to decreasing the amount of noise added into the input
data. Moreover, the method is efficient and easy to adapt to irregular domains.
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